Classification of Imbalanced Data Using a Modified Fuzzy-Neighbor Weighted Approach
نویسندگان
چکیده
Classification of imbalanced datasets is one of the widely explored challenges of the decade. The imbalance occurs in many real world datasets due to uneven distribution of data into classes, i.e. one class has more instances while others have a few that results in the biased performances of traditional classifiers towards the majority class with large number of instances and ignorance of other classes with less data. Many solutions have been proposed to deal with this issue in various crisp and fuzzy methods. This paper proposes a new hybrid fuzzy weighted nearest neighbor approach to find better overall classification performance for both minority and majority classes of imbalanced data. Benefits of neighbor weighted K nearest neighbor approach i.e. assignment of large weights to small classes and small weights to large classes are merged with fuzzy logic. Fuzzy classification helps in classifying objects more adequately as it determines that how much an object belongs to a class. Experimental results exhibit the improvements in classification of imbalanced data of different imbalance ratios in comparison with other methods.
منابع مشابه
Improved Fuzzy-Optimally Weighted Nearest Neighbor Strategy to Classify Imbalanced Data
Learning from imbalanced data is one of the burning issues of the era. Traditional classification methods exhibit degradation in their performances while dealing with imbalanced data sets due to skewed distribution of data into classes. Among various suggested solutions, instance based weighted approaches secured the space in such cases. In this paper, we are proposing a new fuzzy weighted near...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملA Hybrid Weighted Nearest Neighbor Approach to Mine Imbalanced Data
Classification of imbalanced data has drawn significant attention from research community in last decade. As the distribution of data into various classes affects the performances of traditional classifiers, the imbalanced data needs special treatment. Modification in learning approaches is one of the solutions to deal with such cases. In this paper a hybrid nearest neighbor learning approach i...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کامل